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ABSTRACT The collection of long-term health data is accelerating with the advent of portable/wearable
medical devices including electrocardiograms (ECGs). This large corpus of data presents great opportunities
to improve the quality of cardiac care. However, analyzing the data from these sensors is a challenge; the
relevant information from∼120 000 heart beats per patient per daymust be condensed into a human-readable
form. Our goal is to facilitate the analysis of these unwieldy data sets. We have developed an open source tool
for creating easy-to-interpret plots of cardiac information over long periods. We call these plots ECG clocks.
The utility of our ECG clock library is demonstrated through multiple examples drawn from a database of
24-h Holter recordings. In these case studies, we focus on the visualization of heart rate and QT dynamics.
The ECG clock concept is shown to be relevant for both physicians and researchers, for identifying healthy
and abnormal values and patterns in ECG recordings. In this paper, we describe how to use the ECG clock
library to analyze 24-h ECG recordings, and how to extend the source code for your own purposes. The tool
is applicable to a wide range of cardiac monitoring tasks, such as heart rate variability or ST elevation. This
library, which we have made freely available, can help provide new insights into circadian patterns of cardiac
function in individuals and groups.

INDEX TERMS Electrocardiogram, heart rate variability, long QT syndrome, open-source software,
visualization.

I. INTRODUCTION
Holter monitors are portable ECG recorders used for long-
term patient monitoring. They are incredibly valuable tools,
as many ‘‘interesting’’ cardiac events will not occur during
brief recordings in a clinic; the patient must instead be moni-
tored throughout their normal daily activities. After recording
a patient for some time — usually 24 hours — the data is
extracted and analyzed. The physician is presented with a
summary of events that occurred during the recording—min,
max, and average value for a handful of important parameters
like heart rate, for example. If a dangerous value is detected at
some point in the recording, or the patient indicates that they
experienced a symptom at a certain time of day, the doctor
might investigate further bymanually checking the ECG trac-
ing at the time of the event. This process is somewhat tedious,
particularly since doctors have many patients to monitor.

Additionally, the recording summaries may drastically
over-simplify the results, preventing the physician from
uncovering important information; dangerous events or pat-
terns can be washed out by the averaging process. There is a
clinical need for a system that presents 24-hour ECG data in
a simple form, without over-summarizing it.

While performing statistical analysis on ECG recordings
in the Telemetric and Holter ECG Warehouse (THEW) [1],
we realized that there was a great opportunity to study various
cardiac features by hour, day of week, season, etc. Time and
date can be extracted from Holter recordings, yet such anal-
yses are rarely presented. With a feature like heart rate (HR),
for example, we can providemuchmore than simply themean
or standard deviation in a given population; we can compute
these statistics for every minute of the day, yielding more
accurate reference values for clinical use. Futher, by using
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the demographic information in the THEW database, we are
also able to separate results by age, gender, the presence of
beta blockers, and other factors. Our analysis of heart rate
in 200 healthy subjects revealed interesting features in the
daily cardiac cycle, such as the difference and transition of
HR between night and day, and maxima and minima around
meals [2].

After our initial investigation of heart rate patterns in
THEW recordings, we shifted our focus to another cardiac
interval: QT. Prolongation of the QT interval can greatly
increase the risk of ventricular arrhythmias, so it is an impor-
tant marker for cardiologists to monitor. During the course of
our research, we developed the ‘‘QT Clock’’ as a method of
visualizing QTc — the ‘‘corrected’’ QT interval — over
24-hour data sets [3]. The QT Clock is a polar plot repre-
senting a 24-hour clock. The radius represents the value of
the feature (QTc), and the angle is time of day. An example
plot is given in Fig. 1.

FIGURE 1. Example QT Clock. The recording is of a 1-year-old
LQT2 female from the THEW E-HOL-03-0480-013 database. We see that
she stays in the same QTc range as her healthy (i.e. no LQTS genotype)
peers during the day, but has slightly prolonged QTc at night.

There are two particularly important features to note
in Fig. 1: (1) the blue line, representing the value of a sin-
gle cardiac feature (QTc) for a specific patient, and (2) the
green area, representing the range of normal values for that
feature based on analysis of recordings from healthy subjects.
This presentation has many uses in clinical and research
areas, as we will demonstrate in the later sections. Further,
this visualization technique will continue to become more
relevant; mobile ECG sensors such as [4] and [5] are becom-
ing ubiquitous, which increases the availability of data sets
for research, andwill overwhelm physicians if the data cannot
be condensed.

Anticipating the rapid growth of research in the area
of long-term cardiac monitoring, we have expanded the
QT Clock concept into the ECG Clock. That is, we apply
the same QT plotting concept to other ECG parameters.

The ECG Clock library we are releasing can be adapted to
monitor virtually any cardiac feature over 24 hours. In this
paper, we demonstrate the use of this open source tool through
several case studies, focusing mainly on QTc and heart rate
visualization. The remaining sections are broken down as fol-
lows: In Section II, we explain the significance of a few basic
cardiac features, and how we compute those features (and
their statistics) from our Holter recordings. In Section III,
we describe the requirements, structure, and features of the
ECG Clock library, and how to use it. In Section IV, we pro-
vide motivation for the use of ECG clocks through several
case studies. Finally, we conclude in Section V with a brief
discussion and pointers to future work.

FIGURE 2. Typical ECG waveform for one cardiac cycle, with key ‘‘waves’’
annotated. Prolongation of the QT interval relative to the total cardiac
cycle can indicate a high risk for adverse events. (Image source:
SinusRhythmLabels.png by Anthony Atkielski).

II. BACKGROUND
A. CORRECTED QT INTERVAL (QTC)
The QT interval is the time from QRS onset to the end of the
T wave in an ECG signal, and is depicted in Fig. 2. QTc is the
‘‘corrected’’ QT interval (based on heart rate), and is usually
computed with one of the following two equations:

QTcB =
QT
√
RR/s

(1)

QTcF =
QT

3
√
RR/s

(2)

where the ‘‘B’’ and ‘‘F’’ indicate that these are the Bazett [6]
and Fridericia [7] corrections, and the division by one second
is to preserve the units of QT. The normal range of QTcB is
roughly 356–449ms in men, and 369–460ms in women [8].
QTc may be prolonged by drugs or genetic factors, and
dangerous prolongation is known as the Long QT Syn-
drome (LQTS). When such prolongation occurs, subjects
are prone to potentially-fatal arrhythmias like torsades de
pointes (TdP) [9]. LQTS is responsible for an estimated
3000–4000 sudden deaths in children and young adults in the
US each year [10]. At least thirteen genes have been identified
that contribute to Long QT; LQT1 and LQT2 are the most
common [11].
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FIGURE 3. Filtering noisy annotations. This recording is from a 32-year-old female LQT1 patient in the THEW E-HOL-03-0480-013 database. Over
80,000 QTc values were annotated. Directly plotting these values produces the cyan line. Applying a median filter with a 10 minute window
(i.e., passing filtering=10 to the add_recording() function) produces the blue line. (a) Output. (b) Code.

In at-risk patients, QT (and QTc) are typically computed
from 10-second ECG snapshots during clinic hours. Or, if a
Holtermonitor is used, the physician is usually presentedwith
very basic QT/QTc statistics such as min/max/mean for the
24 hour recording. As wementioned in Section I, it is difficult
or impossible to identify risky times of day for a given patient
using only these checkup techniques. LQT2 patients, for
example, are known to have more severe QTc prolongation at
night, whereas LQT1 patients are more likely to experience
symptoms during exercise [12]. The ‘‘concealment’’ of LQTS
in LQT2 patients during clinic hours poses one diagnos-
tic challenge, and the varying penetrance of various LQTS
genes poses another. To overcome these obstacles, we will
characterize QTc across different populations/genotypes, and
also plot QTc over 24-hour recordings. This presentation will
allow identification of dangerous times or events, and will
also be useful in drug trials and induction protocols.

B. THE QT CLOCK
A single 24-hour Holter recording consists of roughly
120,000 QTc data points, and the inevitable noise due to
sensor or annotation issues will make any plot of this data
unreadable.We usually remove this noise with amedian filter,
as we demonstrate in Fig. 3. The tradeoff of the filtering
process is that short duration events will be removed, but
this is not a concern when we are only interested in longer
duration trends. If you are concerned about brief events, and
your annotations are accurate enough, youmay choose to plot
the unfiltered beat-to-beat data.

When plotting long-term monitoring data on conventional
Cartesian axes, we often found the time axis to be cum-
bersome. We could, for example, always start the axis at
midnight, which resulted in a discontinuity when reading the
plot. Or, we could align the axis to the start of the recording,
but this slowed down interpretation of the plot because

interesting times like ‘‘night’’ or ‘‘morning’’ were in dif-
ferent locations for every plot. We finally settled on the
24-hour clock in polar coordinates, which removes the dis-
continuities and standardizes the locations of different times
of day.

In addition to the QTc data of a particular patient/
recording, we may also highlight regions on the plot
where QTc would be considered ‘‘normal’’ or ‘‘abnormal’’.
We typically present the healthy range in green, and danger-
ous range in red, as in Fig. 1. We explain how these regions
are generated in Section II-D.

Applications of the QT Clock to a database of
LQTS Holters was the topic of [3]. The concept and com-
ponents of the QT Clock form the basis for the more general
ECG Clock library, which is the topic of this paper.

C. DATA PREPARATION
In order to plot features like HR and QTc, we must first
compute them. Holter recordings are generally not annotated
with beat-to-beat interval values; they simply provide the
raw ADC data (i.e. amplitude vs. time) for each ECG lead.
We have access to hundreds of such recordings in the
THEW database, and will extract the relevant values from
them for our examples. To accomplish this, we use an
award-winning [13] open source library developed by
Yuriy Chesnokov [14] to annotate recordings from two pri-
mary THEW databases: Healthy (E-HOL-03-0202-003), and
Genotyped LQTS (E-HOL-03-0480-013). The annotation
library provides — among other things — the locations of
Q onset, R, and T offset for every beat on each lead.Wemerge
the annotations from all leads into a single list, keeping
the median RR at each heart beat and the worst possible
(i.e. longest) QT. QTc and HR are then computed from
this consolidated data set. Noise/outliers are removed during
plotting, as demonstrated in Section III-D. This process is
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described in more detail in [2] and [15]. We will not be
looking at any other features (such as PR or ST) in this paper,
but the method of extracting them would be similar.

D. STATISTICS FOR DECISION SUPPORT
Aswe saw in Fig. 1, it is helpful to compare a single patient to
a larger population, e.g. to check where the patient’s QTc falls
relative to healthy subjects. We would therefore like the ECG
Clock Library to be capable of loading reference ranges from
disk, and adding them to the plot — i.e., we want to store the
values used to generate the green (i.e. healthy) range in the
figure.

Typical ranges for QTc (and other ECG parameters)
have been thoroughly investigated [8], but reference ranges
that take precise time of day into account do not exist.
Because of the time-dependence of LQTS that we have
already discussed, we have developed our own refer-
ence ranges from the THEW databases mentioned in
Section II-C. The ECG Clock Library includes these ranges
for many populations (separated by gender, LQT geno-
type, etc.), in CSV files with the following columns:

time of
day

value (0th

percentile)
value (1st

percentile)
. . . value (100th

percentile) .
Currently, we have only computed these spreadsheets for
HR and QTc. QTc values were pre-filtered with a sliding
10-minute median, but HRwas not filtered because it is much
easier to annotate and therefore less noisy.

Use of these ‘‘pre-computed normal range’’ files is
described in Section III-D. You may use our results,
or provide your own values. Our results were generated
using the annotation algorithm introduced in II-C ([14]). You
should be warned that while this algorithm performed well in
a relevant contest, it is unproven in a clinical setting. Further,
the ranges were computed from our relatively small database,
which becomes even smaller when broken down by gender
and genotype.

III. THE ECG CLOCK LIBRARY
The ECG Clock library is written with the primary
purpose of generating plots of ECG interval values on a
24-hour axis. There is a wide range of applications for such
plots, some of which will be demonstrated in Section IV.
Users may modify the code if desired; it is released
under the permissive MIT License, and is available at
https://bitbucket.org/atpage/ecgclock/. Extending the func-
tionality of the library to cover new cases usually only
requires minor changes.

A. SYSTEM REQUIREMENTS
To generate plots, we use Python and the well-known
matplotlib library [16]— in fact, much of the ECGClock
code is simply wrappers around matplotlib. Working
in Python also allows us to parse input files very easily;
the dateutil module is quite helpful in this process. The
final module that is required (outside of the standard library)
is numpy. The code has been tested in Python 2.7 and 3.4.

B. INPUT FILE SPECIFICATIONS
ECG annotations should be provided as CSV files. Ideally,
the file will contain one {time, value} pair per row, but you
may also choose to specify the column numbers to plot from a
larger file. Time may be stored in relatively arbitrary strings,
such as ‘‘11:16’’ or ‘‘2015-07-15T11:16:00.535’’. Values
(e.g. QTc) should be stored in milliseconds, but the library
will attempt to convert them from seconds if necessary.
If this automatic conversion should not be applied to your
data, you may choose to create a new subclass for your appli-
cation, or comment/remove the sec_to_msec() calls.
Here is the head of an example CSV file, where we have
added some comments about irregularities in the data:

time,QTcB
07:33:06.683,0.408
07:33:07.578,0.404
07:33:08.467,0.407
07:33:09.350,0.413
07:33:10.239,0.412
07:33:11.139,0.409
07:33:12.033,0.404
07:33:15.539,0.409 # missing beats
07:33:16.361,0.415
07:33:17.178,0.411
07:33:18.011,0.453 # noise
07:33:21.117,0.425 # missing beats
07:33:21.889,0.408
07:33:22.733,0.483 # noise
07:33:23.444,0.409

Although an unlimited number of recordings can be added
to the same plot — to view a patient’s response to different
prescriptions, for example — we find that the plots tend to
get cluttered with more than 3–4 recordings. Incorporation
of additional information (e.g. from more sensors, which
are not necessarily cardiac) on the same axes is an ongoing
research challenge [17]; we expect that plots of heart rate and
QTc together, or QTc and TpTe, for example, will make it
easier to gauge the interaction between related features.

C. STRUCTURE AND USAGE
The ECG Clock library consists of one main class,
ECGClock, that provides most standard functions such as
the ability to add a recording or an annotation to a polar
axis, save the plot to a file, etc. For our analysis of QTc, we
created a subclass called QTClock that adds features such
as highlighting standard ‘‘dangerous’’ ranges specific to QTc.
(If, for example, you intend to look at ST segment amplitude,
perhaps you would subclass ECGClock as STClock and
add functions that highlight areas of ST depression or eleva-
tion in different colors, as well as changing the default axes
ranges in __init__.) Finally, there is an ECGFigure class
which basically holds many ECGClock subplots. You may
think of ECGFigure and ECGClock as behaving like the
Figure and Axes objects in matplotlib, though they
are not actually extensions of those classes.

There are currently two ways to interface with the library:
1) Importing it in another Python script. Using this

method, the end user will likely need less than 10 lines
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of code to generate each of their plots. See
clock_example.py in the Git repository for a
demonstration, or the code in the later Figures.

2) For simple QT clocks, you may directly run
QTClock.py from the command line. This method
does not provide access to all features, but can be
used to generate basic QTc plots in a single line.
QTClock.py -h explains the syntax; an example
would be:

./QTClock.py −i qtcf_ann.csv − f 10

−o output.png

to plot the QTc values from qtcf_ann.csv on a
standard axis, with a 10 minute filter width, and save
as output.png.

D. BASIC FEATURES
Output Options: Plots may be saved to disk using the
save() function, or displayed in an interactive window
using show(). File output is ideal for batch processing,
whereas the interactive view is useful for measuring QTc at
‘‘interesting’’ times and/or adjusting the plot range before
saving.
Ranges: The red and green background highlights

in Fig. 1 provide decision support for the clinician. The
utility of the static red range is self-explanatory, and for
QT clocks, it can be added and customized using the
add_danger_range() function. The green area dis-
played in the figure is more dynamic; we show the interquar-
tile range (IQR) of QTc in healthy patients (using the stored
ranges from Section II-D) in dark green, and a wider per-
centile range (5–95%) of QTc in those patients in lighter
green. This provides a reference of what is normal/healthy.
Youmay also elect to show a static range—350ms to 450ms,
for example — rather than varying the values throughout the
day. This is possible with the add_healthy_range()
function. Or, instead of comparing a patient to the healthy
group, you may wish to compare them to their peers with
the same genotype. To do this, you may select, for exam-
ple, ‘‘LQT2_female.csv’’ rather than ‘‘healthy_female.csv’’
when calling add_percentile_range(). Note that due
to the relatively small number of recordings in the THEW
databases, extreme percentile values (such as 99%) are likely
to reveal noise rather than accurate values at some times
of day. For this reason, add_percentile_range()
accepts a smoothing argument. With our data and anno-
tation algorithm, roughly the 20–80 percentile range seems
to provide a good reference.
Filtering: Beat-to-beat annotations are often very noisy,

requiring filtering to view. You do not need to pre-filter
such data before opening it in the ECG Clock library; you
may simply specify a median filter width as an argument to
add_recording(). Five to ten minutes is typically a good
width, but very noisy data may require an even wider window.
If course, if your data is fairly clean — which is possible
through more advanced annotation algorithms and/or having
more leads to choose from — you may choose to reduce the

filter width or disable it entirely. This will be necessary if you
are interested in shorter duration events, e.g. certain changes
in ST segment levels. Other basic filter types (like mean or
max) are simple to implement, as a general_filter()
function is provided. This function does not use a filter
window size specified in number of samples, but in time.
This is important because beat-to-beat samples will not be
uniformly spaced. Fig. 3 shows the result of applying a
10-minute median filter to a set of QTc annotations contain-
ing lots of outliers.
Subplots: To display multiple plots in the same window

or file, you can create an ECGFigure object and specify
the number of rows and columns. Then, when creating an
ECG Clock, you specify the ‘‘parent figure’’ and the clock’s
location on that figure. Single-plot figures also work this way,
as a subplot inside a parent figure, but the parent figure is
created automatically when you instantiate a clock without
specifying a parent.
Annotations:An add_annotation() function is avail-

able to add text labels and arrows to a plot. You must specify
the location of the arrow head (time, radius) and tail (x, y loca-
tion in the figure). A typical use for this function might be to
identify the location of a maximum value.

IV. CASE STUDIES
In this section, we will demonstrate the utility of several plots
from the perspectives of both clinicians and researchers.

A. QTC VS. AGE
In Fig. 4, we show the same patient’s QTc recorded at five
different ages. On the left, we see that QTc is very stable when
comparing ages 3, 4, and 6. At ages 5 and 7, though, his QTc is
prolonged; this is shown on the right, alongwith the age 6 plot
for reference. This patient’s QTc indicated relatively low risk
in the recordings on the left, yet it indicates high risk during
the two ‘‘anomalous’’ recordings [18]. Unfortunately, we do
not have information about prescriptions or other possible
causes for the prolongation at ages 5 and 7, but his physician
would immediately investigate the cause when presentedwith
the plot.

Finally, note the distinct ‘‘LQT2-like’’ shape of the plots,
where QTc increases at night (similar to the patient in Fig. 1).
This asymmetry could aid in diagnosis, preempting genetic
testing in some cases.

B. DRUG TRIAL
Another typical use of plotting multiple Holters on the same
axes is shown in Fig. 5, where we compare a patient’s baseline
QTc and heart rate to his QTc and heart rate on an antiarrhyth-
mic drug. The drug was administered in the morning, and we
can see its effect on QTc increase into the afternoon, drop
off until roughly midnight, and then re-emerge during sleep.
The effect on heart rate is more immediate and consistent
throughout the day. This presentationmay encourage the drug
manufacturer to perform longer-duration monitoring, and/or
help to characterize the drug’s typical impact.
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FIGURE 4. QTcF evolution with age. This male LQT2 patient (on beta blockers) was recorded annually between ages 3 and 7. For the first two
years, his QTc is relatively healthy during the day, and somewhat prolonged at night. In the third recording, though, his QTc has increased by
over 50 ms throughout the day compared to the previous year. It then returns to the previous baseline range at age 6, then prolongs again
(during the day) at age 7. These deviations from the baseline would alert the doctor to potential drug interactions or hormonal changes. Note
that we have chosen to show static ranges for ‘‘healthy’’ and ‘‘dangerous’’ QTc values, using the add_default_ranges() function. (a) Output.
(b) Code.

For the heart rate plot, we use the generic ECGClock
class and simply modify the default axis range to 20–140.
The green range for heart rate should perhaps be viewed
as ‘‘normal’’ rather than ‘‘healthy’’; it represents the typical
range of values for the healthy population, but values outside
of that range are not necessarily dangerous.

Some patients may have drastically different sleep sched-
ules than the average person, e.g. due to working third shift.
In the figure, we notice that this patient’s heart rate pattern
appears to be misaligned by a couple of hours compared to
the ‘‘normal’’ range. In cases like this, it may be desirable to
rotate the ‘‘expected’’ range to match the patient’s schedule.
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FIGURE 5. Effects of sotalol (a beta blocker/antiarrhythmic drug) on a healthy subject. Green ranges are defined by the inner 68 percentile in
healthy male patients, i.e., approximately equivalent to plus/minus one standard deviation. The patient’s heart rate is lower and less variable
on the drug, and their QTc is much higher — both known effects of sotalol. A cardiologist would be able to use similar plots for their patients to
determine if prescriptions were working as expected, and also to monitor medication adherence. (a) Output. (b) Code.

We will be adding an offset parameter to the library to
allow this. (This will also be useful to adjust annotation data
containing incorrect timing information.)

C. COMPARING GENOTYPES
So far we have looked mostly at individual Holter record-
ings. The ability to compare groups of recordings is also

very useful, though. For example, in a drug trial, we may
want to compare a large group of baseline Holters to a group
of ‘‘on drug’’ Holters. An example where we compare two
groups of patients is given in Fig. 6. In this figure, we look
at the inter-quartile range (IQR) of QTc in patients with
LQT1 and LQT2, with healthy patients also shown for refer-
ence.We can clearly see that QTc prolongation only increases
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FIGURE 6. Comparing two groups. In this case, we are curious about the difference in QTc prolongation between LQT1 and LQT2 subjects. We
plot the IQR of QTc for males and females in each category, as well as for their healthy counterparts. The result clearly shows that LQT2 patients
have higher prolongation at night, despite being almost indistinguishable from LQT1 patients during the day. We also note that most LQT1
patients do not enter the dangerous QTc range (>500 ms), whereas many LQT2 patients — particularly females — do at night. (a) Output.
(b) Code.

at night in the LQT2 group; in LQT1, it is quite stable.
Additionally, most LQT1 patients never enter the ‘‘danger’’
area, whereas LQT2 patients have a relatively high chance
of reaching dangerous prolongation levels during sleep.

This type of plot tells a much more complete story than a list
of basic statistics from the recordings.

To generate the data for this plot, we annotated the
QT and RR intervals in all healthy, LQT1, and LQT2
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FIGURE 7. Heart rate and time derivative of heart rate for a healthy subject. The plot on the left provides the doctor with a comprehensive
picture of the patient’s heart rate and HRV. The green region indicates the interquartile range for heart rate in healthy subjects. The red lines on
the right represent the upper and lower bounds for rate of change, dHR/dt, normalized to percentage change rather than bpm change. This
shows how fast the patient’s heart rate is able to change, and is an example of how the ECG Clock library can be easily extended to display
unconventional features. (a) Output. (b) Code.

Holters from the THEW database, used this information
to compute QTc at every heart beat, and finally com-
puted the percentiles for all beats in each 1-minute window.
The resulting values are stored in the CSV files described
in Section II-D.

D. HEART RATE DIPPING
Elevated heart rate during sleep — i.e., failure of the heart
rate to ‘‘dip’’ to a low enough level — has been associated
with cardiovascular disease and an increased risk of

all-cause mortality [19], [20]. Similarly, low heart rate vari-
ability (HRV) is an indicator of risk for cardiac events [21].
A heart rate plot in the same style as Fig. 1 will provide insight
into these two critical pieces of information.

In Fig. 7, we observe the heart rate of a typical healthy
patient. On the left, we see that the patient’s heart rate
drops from ∼80 bpm during the day to ∼65 bpm at night.
From this plot, we also get an idea of heart rate
variability (HRV); the heart rate appears to fluctuate across
a range of ∼10 bpm throughout the day.
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In addition to the range of HR, we may also be interested
in its rate of change. The HRDerivClock class was created
as an example of how the ECG Clock can be extended to
view other features. In this class, we redefine the default axis
range, and apply a derivative() function to the heart
rate data as it is loaded. We can then plot either the derivative
at each data point, or its upper and lower bounds within a
sliding window. On the right side of Fig. 7, we show the
upper and lower bounds. These bounds tend to stay at around
±0.5 percent/second, meaning that a change from
80 to 65 bpm (about 20%) would take at least 40 seconds.
We further note that changes take place more slowly at
night. A very narrow range on this plot may indicate that
the patient has trouble adapting their heart rate to different
situations.

V. CONCLUSION
Wehave demonstrated that QT clocks could be very useful for
diagnosis and monitoring of the Long QT Syndrome. They
are also instructive in research involving both the congenital
and drug-induced forms of this disease. Likewise, we have
seen that HR clocks can be used for monitoring HRV and
drug response. We expect that researchers will want to apply
(and extend) these concepts to many other cardiac features,
which is why we have decided to make our source code freely
available.

The ECG clock in its current form is not very quantitative;
we are simply plotting the values of ECG features throughout
the day, and allowing the doctor to decide on a course of
action. The highlighted regions can aid in this decision, but
they don’t currently provide numerical values/statistics like
‘‘percentage of heart beats outside of normal range’’, etc.
Further, the annotation data could be used as input to a
more advanced decision support system, providing the doctor
with not only the picture, but recommendations. We will be
pursuing this course of research next.

Another feature we intend to add to the library is
the ability to read a set of individual annotation files
(e.g., HR values for a group of 50 patients) and pro-
duce a percentile range CSV file compatible with our
add_percentile_range() function.
ECG tracings are typically always presented at the same

scale — 10mm/mV, and 25mm/s — allowing clinicians
and researchers to develop their intuition about ‘‘normal’’
vs. ‘‘abnormal’’ tracings. Axes ranges for ECG clocks
should be standardized for the same reason. For QTc, we
have found that 300–600ms is usually a good plot range,
but in extreme cases it must be extended up to 700ms.
As ECG clocks becomemore prevalent, this type of standard-
ization will allow clinicians to visually identify abnormali-
ties in the same way they currently analyze ECGs, X-rays,
ultrasounds, etc.

Finally, in order to make the library more accessible,
we intend to develop a web interface so that non-
programmers can simply upload data or annotations and

generate clocks. Additionally, example IPython notebooks
will simplify the process for programmers who prefer that
environment.
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